No-reference image quality assessment in contourlet domain

نویسندگان

  • Wen Lu
  • Kai Zeng
  • Dacheng Tao
  • Yuan Yuan
  • Xinbo Gao
چکیده

In image processing, efficiency term refers to the ability in capturing significant information that is sensitive to human visual system with small description. Natural images or scenes that contain intrinsic geometrical structures (contours) are key features of visual information. The existing transform methods like Fourier transformation, wavelets, curvelets, ridgelets etc., have limitations in capturing directional information in an image and their compatibility with compression methods. Hence, to capture the directional information or natural scene statistics of an image and to handle the compatibility over distortion methods, Contourlet Transform (CT) can be a promising approach. The goal of no-reference image quality assessment using contourlet transform (NR IQACT) is to establish a rational computational model to predict the visual quality of an image. In this thesis we implemented an improved Natural Scene Statistics (NSS) model that blindly measures image quality using the concept of Contourlet Transform (CT). In fact, natural scenes contain nonlinear dependencies that can be disturbed by a compression process. This disturbance can be quantified and related to human perception of quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural image statistics based 3D reduced reference image quality assessment in contourlet domain

Designing a reliable and generic perceptual quality metric is a challenging issue in three-dimensional (3D) visual signal processing. In many practical 3D application scenarios, the original stereoscopic images (i.e., the reference image) cannot be fully accessed, leaving difficulties to quality assessment. To handle this problem, 3D reduced-reference image quality assessment (RRIQA) metrics ha...

متن کامل

An extended feature set for blind image steganalysis in contourlet domain

The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...

متن کامل

A Robust Image Denoising Technique in the Contourlet Transform Domain

The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...

متن کامل

A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources

The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...

متن کامل

Reduced-Reference Image Quality Assessment based on saliency region extraction

In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2010